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CPCC

Simulation of Preamplified Photodetection W
of Shot-Noise Limited Signals R A%

« Simulation of the amplification of a gray-scale image

In the shot-noise limited regime

« Random zero-mean Gaussian noise Is added to
represent detector noise

— A valid model when the received signal photon number per

pulse or per inverse bandwidth is not too small

* Photocurrents in the unamplified and amplified cases

are scaled appropriately for fair comparison.

i
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CPCC

Simulation of Preamplified Photodetection W
of Shot-Noise Limited Signals s eV
Efficiency deal
e For G =1 (no preamplification) 0<n<1 Dletggtor
— SNR,\ = N (shot-noise limited signal) N D
- <(AN3)2> =NNs, SNRoyr=nN; n

e ForG>1 Ny
— SNR)y = Ng and ((ANg)?) = N, — |G n D

— Output = nGNq. Find ((ANg)?),  from:

— NF = SNRyy, / SNRoyr = Ng/ [(NGNg)2 / ((ANg)2), 6]

.0l
— ((ANg)*)6 = NF (NGNg)? / Ng = | ((ANg)*), nG? NF
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Simulation of Preamplified Photodetection .,..[ij-
of Shot-Noise Limited Signals " op e N

 Noise Figure (N F): [PRL 83 (10), pp.1938-1941, Choi, Vasilyev & Kumar]
o NFtot - |\”:amp + (1 ) ﬂ) / (ﬂG)
~ NFpsa=1 — (NFP), = 1+ (1-7)/(nG)

* Also, the detected signal in each case is different.
So, we scale PSA & PIA noise by G? in order to fairly
compare the photo-current between the three cases.

 Therefore, added noise:
— Nogain — ((ANy?),
— PSA > n[1+(1-n)/MG)]{(ANy)?),
- PIA > n[2(1-1/G) + 1/(nG)] ((ANy)?),
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Simulation of Potential Advantage ™« W”W

Although shown here for a spatially broadband case, our

goal in the MURI is to do proof-of-principle experiments with Soft
raster scanning of the image with use of a fiber-based PSA. Gaussian
Frequency

Filter

Start w/
256 x256 1 IFFT

image Add noise per spatial frequency:
(AN)?), — WhenG =1
Result

n[1+(1-n)/(MG)]((ANg)*), — For PSA

1 [2(1 - 1/G) + 1U(nG)] ((ANy) 2), — For PIA
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Results: Averaged over 100 Frames ~ro WPV
n=0.8 G=10dB “

PSA gain

One frame after
IFFT (no average)

PIA gain
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CPCC

Results: Averaged over 100 Frames ~ro WPV
n=0.3,G=10dB

PSA gain

PIA gain One frame after
IFFT (no average)
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Noise Figure Measurement
of the Fiber PSA S A

Lim, Grigoryan, Shin, & Kumar, OFC’2008
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laser

PSA

Proposed Proof-of-Principle ExperlmentWW%

Fig. 1 Cartoon illustrating the real situations
where PSA finds useful applications.

1: object patterns

2. light scattering material 5-8: fibers
3:imaging lens

objects illumination
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4: fiber collimator 11: PSA fiber
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Experiment in Progress o Wl
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PSA Schematic o W 0 0
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PSA Laboratory
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PSA Attenuation Schematic e WV
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PSA Attenuation Results ~pe WV

PS4 Inputwith Increasing Atenuation
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« Half-wave plate rotated to achieve 15 dB of attenuation in the
signal and idler.

* Pump stays at constant level due to variable optical attenuator.

Center for Photonic Communication and Computing Quantum Imaging Review, NU, 13 Nov 09 Slide # 16 McCormick School of Engineering and Applied Science



PSA Attenuation Results o W
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« Gain stays relatively constant over the range of attenuation.
* SNR ratio decreases with increased attenuation.
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PSA Imaging Schematic e WV
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PSA Imaging Signal o WV

PSA Imaging Signal
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One Dimensional Scan W

lcm

* Three gray bars printed on
transparency at 1200 dpi.

¢ 60%, 70%, 80% gray bars with
transparent background.

* Transparency taped and

sandwiched between two glass
slides.
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CPCC
One Dimensional Scan Results e 'WW’W
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« Low light imaging of target.
* 6 dB Signal Gain
« 1dB SNR
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Northwestern ‘N’ Raster Scan
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Northwestern ‘N’ Imaging Results WWW"W
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Future Applications e WV

INCIDENT RADIATION Near-Field Scanning Optical Microscopy (NSOM)

APERTURE
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J \ SURFACE TO
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! ONE WAVELENGTH L

Betzig & Traut , Sci 257 pp. 189-195
€19 rattman, Selence PP Dunn, Chem. Rev. 99 pp. 2891-2927

L TA)

Genet & Ebbesen, Nature 445 pp. 39-45
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Typical NSOM Setup ~a WV
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van Hulst, et al. J. Stuct. Biol. 119 pp. 222-231
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PSA Assisted NSOM o | WL s
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NSOM Examples e WV

van Hulst, et al. J. Stuct. Biol. 119 pp. 222-231

Center for Photonic Communication and Computing Quantum Imaging Review, NU, 13 Nov 09 Slide # 28 McCormick School of Engineering and Applied Science



NSOM Examples o | WV s

Photonic crystal nanocavities

Okamoto, et al. Appl. Phys. Lett. 82 pp. 1676-1678
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